Mantenimiento de Calderas Acuotubulares ON Line
14894
product-template-default,single,single-product,postid-15115,wp-custom-logo,theme-bridge,bridge-core-2.2.8,woocommerce,woocommerce-page,woocommerce-no-js,ajax_fade,page_not_loaded,,columns-4,qode-theme-ver-21.5,qode-theme-bridge,qode_header_in_grid,wpb-js-composer js-comp-ver-6.2.0,vc_responsive

Cursos Formared

Fecha:

Mantenimiento de Calderas Acuotubulares ON Line

Categorías: ,
Descripción

A.- Duración: 16 horas ON LINE

B.- Introducción: Las calderas acuotubulares son usadas en general para la producción de vapor y energía en plantas de procesos bajo ciclos de autogeneración o cogeneración o bien para la generación exclusiva de energía bajo ciclos de vapor tradicional o en ciclos combinados. Son equipos críticos, donde una salida de operación no planeada de los mismos, puede ocasionar graves problemas tanto en la producción o servicio, como en su integridad mecánica. Tienen además un alto impacto sobre los costos operacionales debido a los precios actuales de los combustibles, razones por las que son un objetivo importante dentro de las políticas de uso racional de la energía (URE) y optimización energética dadas por las normativas ISO 50001/1/3/4

 

Una caldera es el resultado de un cuidadoso equilibrio de procesos fisicoquímicos, térmicos, fluidodinámicos, metalúrgicos y mecánicos, los que debidamente considerados en su proyecto, construcción y montaje, pueden asegurar un equipo de gran confiabilidad operativa y eficiencia térmica bajo un adecuado sistema de control

Cuando en ese balance, algunos de los parámetros o una combinación de ellos se desvían de los valores normales, pueden originar pérdida de capacidad, baja eficiencia, rotura de componentes o simplemente su colapso total.

 

Para la inspección y mantenimiento de calderas se han desarrollado e incorporado modernas técnicas de inspección no destructiva, de mediciones varias y de análisis de riesgos que, posibilitan un mejor proceso de control y operación del equipo. Estas herramientas para que sean efectivas, deben estar integradas al análisis operativo, pues sólo así se podrá obtener la o las causas raíces de los problemas. Dependiendo del tipo de combustible quemado, las calderas pueden tener problemas muy diferentes tal es el caso de las queman carbón, bagazo u otras biomasas de aquellas que usan gas natural o fuel oil o recuperan calor de gases  de escape como los HRSG o OTSG en los ciclos combinados

 

Este curso tiene por objeto integrar las herramientas y recomendaciones de los estándares internacionalmente aplicables al diseño mecánico, inspección y mantenimiento, con aquellos aspectos del diseño térmico que caracterizan y definen la operación de las calderas.

 

El curso estará basado en las investigaciones y recomendaciones de las prestigiosas organizaciones americanas y europeas (EPRI y VGB – PowerTech) y los conocidos estándares de ASME, CEN y NBI aplicables al respecto

 

C.- Destinatarios del Curso:

Profesionales, Técnicos y Operarios de las áreas de Ingeniería, Producción, Mantenimiento o Seguridad, relacionados con  la operación, el proyecto, construcción, montaje, mantenimiento, inspección o seguridad de calderas  de vapor, que precisen conocer, implementar o actualizar sus prácticas ingenieriles o de control de calidad relacionadas con estos equipos. Se aplica a todas las industrias y servicios que posean estos equipos

 

D.- Beneficios del Curso

Después del entrenamiento, los participantes del curso

  • Identificarán y calcularán los principales parámetros operativos del equipo y los fundamentos básicos del diseño térmico y mecánico. Análisis comparativo de diseños.
  • Aprenderán las propiedades mecánicas y metalúrgicas de los componentes a presión según estándares ASME y EN. Verán el uso del concepto de creep y la aplicación del parámetro de Larson & Miller para determinar la relación entre temperatura, tensión y tiempo de rotura.
  • Calcularán cargas térmicas y verificarán temperaturas de pared metálica en sobrecalentadores y paredes de agua. Aprenderán la importancia de la circulación natural y su efecto sobre la temperatura de pared
  • Calcularán y/o verificarán tensiones en los componentes a presión según los estándares ASME I y EN 12952 / 12953 – Part3/4. Aprenderán sobre el impacto de los ciclos de arranque-parada sobre la fatiga de los componentes a presión y su consideración.
  • Conocerán los principales mecanismos de desgaste y tipos de fallas en los diferentes diseños de calderas (HRSG, biomasa, gas natural, etc.)
  • Aprenderán los requisitos de calidad de agua y pureza de vapor según estándares ABMA, ASME y VGB.
  • Aprenderán las diferentes técnicas de inspección y medición según los estándares ASME, EPRI y NBIC y definirán qué inspeccionar, cuándo, dónde y con qué técnica
  • Desarrollarán programas de inspección integrados para cada etapa de disponibilidad del equipo (marcha y en parada). Aprenderán los requerimientos para la extensión de vida de calderas según recomendaciones de EPRI.
  • Aprenderán e implementarán ensayos térmicos como herramienta de diagnóstico operacional según los códigos de performance (PTC) de ASME.

 

E.- Metodología

La estrategia de enseñanza estará basada en la presentación y análisis de casos industriales reales incentivando la interacción de los participantes. Se usarán presentaciones en Power Point, videos y desarrollarán ejemplos con cálculos diversos

F.- Programa

 

Módulo I

Tipos de calderas acuotubulares. Campo de aplicaciones. Parámetros e indicadores claves de funcionamiento y desempeño operacional. La seguridad y el análisis de riesgos. Balance de masas y energía en la caldera. Conceptos básicos del diseño térmico del hogar y equipos de recuperación de calor. Distribución típica de la absorción de calor en calderas. Uso del software FireCAD

Selección y propiedades de materiales para calderas según códigos ASME y CEN. Concepto de creep. Especificaciones técnicas de materiales. Parámetro de Larson & Miller. Diseño mecánico de partes a presión. Cargas térmicas y temperatura de la pared metálica. La circulación natural y los problemas de inestabilidad de flujo y sobrecalentamiento de las paredes tubulares. Análisis de casos industriales

 

 

Módulo II

Calidad de agua para calderas. Requerimientos de los estándares ABMA, ASME, VGB, EPRI. Pureza de vapor para turbinas. Prevención de arrastres de agua y humedad del vapor hacia las turbinas. Importancia del diseño de internos del domo. Inspección de los atemperadores

Mecanismos de desgaste y tensiones en los distintos componentes. Partes afectadas y principales mecanismos de deterioro en las distintas calderas. Fallas típicas en las distintas partes. Ciclos start-stop y la fatiga en componentes a presión en HRSG

Las cenizas en calderas. Índices de ensuciamiento. Emisividad de las cenizas Cálculo de la erosión y corrosión por cenizas. Ecuaciones básicas. Fallas típicas en calderas de carbón, bagazo y biomasa diversas

 

Módulo III

Objetivos del mantenimiento de calderas. Análisis de riesgos. Técnicas de inspección y medición. Características principales. Beneficios y limitaciones de las técnicas NDT

Mejores prácticas en el mantenimiento de calderas. Recomendaciones y requerimientos de los estándares EPRI, ASME, NBIC y API 538. Criterios para su aplicación. Variables y parámetros de medición y control. ¿Qué medir? Selección, oportunidad, lugares y frecuencia de aplicación de las técnicas de medición.

Control de espesores en las partes a presión y no a presión, técnicas usadas y criterios de aceptación según API y Babcock. Fatiga térmica y problemas de fisuras en tubos, colectores y domos. Técnicas de análisis empleadas y técnicas de reparación por soldadura. Tratamientos térmicos pos soldadura. Coating para prevención de corrosión en economizadores, calentadores de aire y chimeneas

Problema de sobretemperatura y efectos del creep. Réplicas metalográficas. Aplicaciones en el hogar, sobrecalentador y colectores. Medición de temperatura de pared como técnica predictiva. Efecto de las cenizas e incrustaciones sobre la temperatura de pared. Cálculo y ejemplos de aplicaciones

 

Módulo IV

Problema de erosión por acción de las cenizas. Uso del cladding de tubos y otros componentes no a presión bajo erosión y/o corrosión. Técnicas y equipos de soplado de cenizas (vapor, aire o agua). Análisis de casos. Preventivo de sopladores

Limpieza química y mecánica. Criterios de aplicación. Layup de calderas fuera de operación. Control de infiltraciones en paredes y calentador de aire según PTC4.3.

Termografía infrarroja y estimación de pérdidas por convección y radiación en paredes. Control de corrosión bajo aislación (CUI) en caldera y cañerías de transporte de vapor.  Pruebas hidráulicas, procedimientos. Cuidados en la ejecución. Calidad de agua y prueba hidráulica. Problemas en sobrecalentadores no drenables

Control de la sobrepresión del lado del vapor. Válvulas de seguridad. Mantenimiento y ensayo de válvulas de seguridad según ASME PTC25 y NBIC Parte 4. Sobrepresión en el hogar. Compuertas de alivio del lado de los gases

Mantenimiento en instalaciones auxiliares a presión, tanques de condensados y desaereador. Criterios de NACE para la inspección NDT en desaereadores. Problemas de diseño y fallas típicas. Mantenimiento predictivo de bombas, ventiladores, dampers y motores

Sistema de medición y control. Lazos principales y secundarios. Sistema de combustión y BMS. Mantenimiento de quemadores. Chequeos de control

La extensión de vida y vida remanente según EPRI. Fitness for Service según API/ASME. Criterios y técnicas de inspección. El concepto de Vida Consumida de Palmgren & Miner. Ejemplos de aplicación